1. PRODUCT : COMPACT FLUORESCENT LAMP (CFL)

2. PRODUCTION CAPACITY : 30,000 Nos.

3. YEAR OF PREPARATION : 2010-11

4. PREPARED BY : ELECTRONICS DIVISION
MSME- DEVELOPMENT INSTITUTE
ELECTRONICS COMPLEX, CHAMBAGHAT
SOLAN -173213 (HIMACHAL PRADESH)
PHONE :- 01792-230766, 230265
FAX No:- 01792-230766
1. INTRODUCTION

Compact Fluorescent light bulbs, also known as CFLs, are an eco-friendly alternative to standard incandescent light bulbs. CFLs can be screwed into the same sockets as other light bulbs and provide very comparable lighting. CFLs are easily recognizable due to their distinct twisting shape. These “green” light bulbs have a host of benefits that can help improve the planet, our home and finances. One of the greatest benefits of compact fluorescent light bulbs is their energy efficiency. A CFL uses 50 to 80 percent less energy than other light bulbs. While many consumers are dissuaded by the higher initial cost of a CFL these light bulbs must be replaced less often than incandescent bulbs. Compact fluorescent lights can have a dramatically extended lifespan, lasting as much as 10 times longer than their incandescent counterparts. While standard incandescent bulb will last for a year, a CFL can last anywhere from 8 to 10 years. Furthermore, a 75-watt incandescent bulb can be replaced by a 20-watt CFL bulb. One can receive the same amount of light while paying for far less energy. Replacing just one incandescent bulb with a CFL can prevent as much as 450 lb. of carbon dioxide from entering the atmosphere. Compact fluorescent light bulbs can be used in almost any light fixture that accepts an incandescent bulb. CFLs can be used in everything from table lamps to ceiling fixtures. Specially designed CFLs are also available for more unique types of lighting. A three-way CFL can be used in lighting fixtures with a three-way setting. Though CFLs were initially unsuitable for dimmer switches, dimmable CFLs are now available as well. While compact fluorescent lighting is ideal for many situations, it must be used in the right way to reap the full benefits.

2. MARKET POTENTIAL:

The average rated life of a CFL is between 8 and 15 times that of incandescent. CFLs typically have a rated life-span of between 6,000 and 15,000 hours, whereas incandescent lamps are usually manufactured to have a lifespan of 750 hours or 1,000 hours. For a given light output, CFLs use 20 to 33 percent of the power of equivalent incandescent lamps.

Electrical power equivalents for differing lamps
<table>
<thead>
<tr>
<th>Compact Fluorescent (W)</th>
<th>Incandescent(W)</th>
<th>Minimum light output (lumens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-13</td>
<td>40</td>
<td>450</td>
</tr>
<tr>
<td>13-15</td>
<td>60</td>
<td>800</td>
</tr>
<tr>
<td>18-25</td>
<td>75</td>
<td>1,100</td>
</tr>
<tr>
<td>23-30</td>
<td>100</td>
<td>1,600</td>
</tr>
<tr>
<td>30-52</td>
<td>150</td>
<td>2,600</td>
</tr>
</tbody>
</table>

If a building’s indoor incandescent lamps are replaced by CFLs, the heat produced due to lighting will be reduced. At times when the building requires both heating and lighting, the heating system will make up the heat. If the building required both illumination and cooling, then CFLs also reduce the load on the cooling system compared to incandescent lamps resulting in two concurrent savings in electrical power. The luminous efficacy of CFL sources is typically 60 to 72 lumens per input watt of electric power, versus 8 to 17 lm/W for incandescent lamps. This gives an efficiency range of 17 to 21% of a theoretical ideal white light source giving 347 lumens per radiant watt for a tri-phosphor spectrum. While CFLs require more energy in manufacturing than incandescent lamps, this embodied energy is more than offset by the fact that they last longer and use less energy than equivalent incandescent lamps during their lifespan. While the purchase price of an integrated CFL is typically 3 to 10 times greater than that of an equivalent incandescent lamp, the extended lifetime and lower energy use will more than compensate for the higher initial cost. CFLs are extremely cost effective in commercial buildings when used to replace incandescent lamps. Thus CFL has got an enormous market potential.

3. BASIS AND PRESUMPTIONS:

1. The unit is proposed to work on a single shift basis of 8 hrs. duration and the percentage of capacity utilization is 75% and 25 working days per month.

2. The unit is expected to achieve the rated capacity utilization within 12 months period of time.

3. The labour and wages are taken as per the prevailing market rate.

4. Interest rate is taken as 16%
5. Operating period of the project is expected to be 16 years.

6. Cost of Plant & Machinery and Raw Material etc. are taken as per the prevailing market rate.

7. The project preparation cost etc. whenever required could be considered under pre-operative expenses.

It is also proposed that all components like heating element, lugs, switches etc. are to be procured from other industries and unit will do the assembly and testing of subassembly and final assembly and packing.

4. IMPLEMENTATION SCHEDULE:

1. Preparation of Project Report 1 Month

2. EM filing & other formalities

3. Sanction of loan from financial institute 3 Months

4. Plant & Machinery
 i) Placement of orders
 ii) Procurement
 iii) Power connection/classifications 3 Months
 iv) Instrument erection of Machine & test equipment
 v) Recruitment of technical persons

5. Procurement of Raw Material 1 Month

6. Trial Production 9th Month

7. Commercial Production 10th Month

5. TECHNICAL ASPECTS

I PROCESS OF MANUFACTURE: Flow chart of CFL is as follows:-
PROCESS FLOW CHART FOR CFL

START

STORE

Lamp Testing

Failed

Sleeve insertion to lamp filaments

Wrapping of Filament wires to the Ballast

Failed

Ballast Testing

OK

Failed

Rework

Testing I

Failed

Supply wire Assembly with Cap

Testing II

Failed

Fitting of Lamp to plastic shell

Burn-in Test

Failed

Top Eyelet soldering

Failed

Flux Residues cleaning

A
A

- Rating Plate Printing
- Batch Code Printing
- Product Cleaning

- Testing III

 Failed → Rework

 OK → Tested OK Sticker

 → Final Packing

 → Dispatch to BSR

 END

III. PRODUCTION CAPACITY PER ANNUAL

Quantity : 30,000
Value : 27,00,000/-(Rs.)

IV. MOTIVE POWER : 5 KW (3,000/- Per month electrical charges)

V. POLLUTION CONTROL:

Manufacturing of CFL does not produce any pollution & hence does not require pollution control certificate from pollution control Board. However manufacturing of CFL is categorized under no pollution producing industry.

III. ENERGY CONSERVATION REQUIREMENTS:

1. Use of energy saver (20w) in place of fluorescent tube 40 watt.
2. Periodic maintenance of different electric equipments
3. Adoption of energy conserving technologies, production aids and testing facilities
4. Optimum use of electrical energy during testing of CFL Lighting
5. Proper selection of layout of lighting system
6. Timely switch on and off of the system
7. Use of Electronic choke in place of wire wound choke
8. Proper maintenance of the lighting system such as periodical cleaning of tubes and fixtures.

6. FINANCIAL ASPECTS:
A. **FIXED CAPITAL**

(i) **Land & Building** (300 Sq MTRS.) - Rent @12,000/- per month

(ii) **MACHINERY**

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Description</th>
<th>Ind/Imp</th>
<th>Qty.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tesla machine (1st stage checking)</td>
<td>Ind.</td>
<td>02</td>
<td>14,000/-</td>
</tr>
<tr>
<td>2.</td>
<td>Grinding Tool for Wire Cleaning.</td>
<td>Ind.</td>
<td>02</td>
<td>10,000/-</td>
</tr>
<tr>
<td>3.</td>
<td>PCB soldering station</td>
<td>Ind.</td>
<td>02</td>
<td>16,000/-</td>
</tr>
<tr>
<td>4.</td>
<td>Cap Notching machine</td>
<td>Ind.</td>
<td>02</td>
<td>5,000/-</td>
</tr>
<tr>
<td>5.</td>
<td>Eyelid soldering</td>
<td>Ind.</td>
<td>02</td>
<td>16,000/-</td>
</tr>
<tr>
<td>6.</td>
<td>Pad Printing machine</td>
<td>Ind.</td>
<td>01</td>
<td>10,000/-</td>
</tr>
<tr>
<td>7.</td>
<td>Sleeve cutting machine</td>
<td>Ind.</td>
<td>02</td>
<td>8,000/-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>79,000/-</td>
</tr>
</tbody>
</table>

(iii) **EQUIPMENTS**

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Description</th>
<th>Ind/Imp</th>
<th>Qty.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Digital Multimeter</td>
<td>Ind.</td>
<td>02</td>
<td>3,500/-</td>
</tr>
<tr>
<td>2.</td>
<td>Megger 1000V DC</td>
<td>Ind.</td>
<td>02</td>
<td>7,500/-</td>
</tr>
<tr>
<td>3.</td>
<td>Testing Panel with Ammeter, Voltmeter</td>
<td>Ind.</td>
<td>01</td>
<td>10,000/-</td>
</tr>
</tbody>
</table>
Multimeter

4. Jigs & fixtures for fixing of P.C.B. Ind. 02 1,000/-
5. Manual series testing jig for C.F.L Ind. 01 2,000/-
 total 24,000/-

TOTAL COST OF MACHINERY & EQUIPMENTS: 79,000/- + 24,000 = 1,03,000/-

(A)Electrification & Installation Charges approx. 10% of Machinery - 7,900/-

(B)Cost of Office Equipment, working tables etc - 30,000/-

(C)Preoperative Expenses - 10,000/-

Total: 7,900/- + 30,000/- + 10,000/- = 47,900/-

TOTAL FIXED INVESTMENT

(1) M/c and Equipments - 1,03,000/-
(2) Prelim & prospective expenses - 47,900/-
(3) such as consultancy fees, elec. Bill etc.

TOTAL = 1,50,900/-

B. WORKING CAPITAL PER MONTH
(I) Staff & Labour

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of Staff</th>
<th>No.</th>
<th>Salary (P.M.)</th>
<th>Total (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Manager</td>
<td>1</td>
<td>7000/-</td>
<td>7000/-</td>
</tr>
<tr>
<td>2.</td>
<td>Clerk/Store Keeper</td>
<td>1</td>
<td>5000/-</td>
<td>5000/-</td>
</tr>
<tr>
<td>3.</td>
<td>Accountant</td>
<td>1</td>
<td>5000/-</td>
<td>5000/-</td>
</tr>
<tr>
<td>4.</td>
<td>Peon</td>
<td>1</td>
<td>3000/-</td>
<td>3000/-</td>
</tr>
</tbody>
</table>

Total: 20,000/-

(II) Technical Manpower

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of Staff</th>
<th>No.</th>
<th>Salary (P.M.)</th>
<th>Total (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Supervisor</td>
<td>1</td>
<td>6000/-</td>
<td>6,000/-</td>
</tr>
<tr>
<td>2.</td>
<td>Skilled Worker</td>
<td>3</td>
<td>6000/-</td>
<td>18,000/-</td>
</tr>
<tr>
<td>3.</td>
<td>Semi Skilled Worker</td>
<td>4</td>
<td>4000/-</td>
<td>16,000/-</td>
</tr>
<tr>
<td>4.</td>
<td>Un-Skilled Worker</td>
<td>3</td>
<td>3300/-</td>
<td>9,000/-</td>
</tr>
</tbody>
</table>

TOTAL: 49,000/-

TOTAL WAGES + SALARIES = 49,000/- + 20,000/- = 69,000/-
(III) RAW MATERIAL PER MONTH

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of Item</th>
<th>Qty.</th>
<th>Rate</th>
<th>Total (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Capsule (Glass Tube)</td>
<td>2500</td>
<td>10/-</td>
<td>25000/-</td>
</tr>
<tr>
<td>2.</td>
<td>PBT (Plastic Body)</td>
<td>2500</td>
<td>3/-</td>
<td>75,00/-</td>
</tr>
<tr>
<td>3.</td>
<td>B22 cap</td>
<td>2500</td>
<td>0.50/</td>
<td>1250/-</td>
</tr>
<tr>
<td>4.</td>
<td>PCB</td>
<td>2500</td>
<td>10/-</td>
<td>25000/-</td>
</tr>
<tr>
<td>5.</td>
<td>Assembly Charges</td>
<td>2500</td>
<td>2/-</td>
<td>5000/-</td>
</tr>
<tr>
<td>6.</td>
<td>Packing Charges</td>
<td>2500</td>
<td>1/-</td>
<td>2500/-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>66,250/-</td>
</tr>
</tbody>
</table>

(IV) UTILITIES

1) Electricity 750 units @ Rs 4/- Per Unit - 3000/-

2) Water - 500/-

TOTAL 3500/-

(V) OTHER CONTINGENT EXPENSES

1) Postage & Stationary - 3500/-

2) Repair & Maintenance - 4000/-

3) Transport - 4000/-

4) Adv. & Publicity - 5000/-

5) Insurance - 1000/-

TOTAL 17,500/-
TOTAL RECURRING EXPENSES (P.M.) (I+II+III+IV+V)

1) Rent of Land & Building for 1 month @12,000/- per month - 12,000/-

2) Personnel - 69,000/-

3) Raw Material - 66,250/-

4) Utilities - 3,500/-

5) Other Expenses - 17,500/-

TOTAL - 1,68,250/-

C. TOTAL CAPITAL INVESTMENT

FIXED CAPITAL - 1,50,900/-

WORKING CAPITAL FOR THREE MONTHS - 5,04,750/-

TOTAL - 6,55,650/-

D. FINANCIAL ANALYSIS:

1. Cost of production (per year) (Rs.)

 Total Recurring cost - 20,19,000/-

 Depreciation on machinery, fixtures & prod. equipments @ 10% - 10,300/-

 Dep. on office equipments @ 20% - 6,000/-

 Interest on investments @ 12% - 78,678/-

 Total :- Rs. 21,13,978/-
II. Turn-over (per year)

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Rate</th>
<th>Value (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.) CFL 15 W</td>
<td>30,000 NOS.</td>
<td>88/-</td>
<td>26,40,000/-</td>
</tr>
</tbody>
</table>

Net Profit per year

=Sales – Cost of Production

=26,40,000/- - 21,13,978/- =

=5,26,022/-

Net Profit Ratio :-

Net Profit Per Year \times 100

Turn-over per year

= 5,26,022/- \times 100 = 19.92 %

= 26,40,000/-

Rate of Return:-

Net Profit Per Year \times 100

Total Investment

=5,26,022/- = 80.22%

= 6,55,650/-
E. Break-even Analysis (%age of total production envisaged)

(i) Fixed Cost:

- **a)** Depreciations (all types) \(16,300/-\)
- **b)** Rent on building \(1,44,000/-\)
- **c)** Interest on investments \(78,678/-\)
- **d)** 40% of salaries & wages \(27,600/-\)
- **e)** 40% of Utilities \(1,400/-\)
- **f)** 40% of O. Expenses \(7,000/-\)

Total: \(2,74,978/-\)

(ii) Net Profit per year:

\:- Rs. 5,26,022/-

Break-even Point (B.E.P).

\[\text{B.E.P.} = \frac{\text{Fixed Cost}}{\text{Fixed Cost} + \text{Net Profit}} \times 100 \]

\[= \frac{2,74,978/-}{2,74,978/- + 5,26,022/-} \times 100 \]

\[= \frac{2,74,978/-}{8,01,000/-} \times 100 = 34.32\% \]
ADRESSES OF RAW MATERIAL AND PLANT AND MACHINERY SUPPLIERS:

1) M/s Phillips India Ltd., 68, Najafgarh Road, New Delhi.
2) M/s Mangal Instruments, 134, Apna Bazar, Nehru Nagar, Ring Road, N. Delhi
3) M/s Aerosol (P) Ltd, B-90, Mayapuri, Ph-I, Ind. Area, N. Delhi.
5) M/s R.S.G Packaging 483-A, Oberoi compound, Dilshad Garden, G.T. Road, N. Delhi.
6) M/s AAKRITI Exports, 187, DSIDC Compound, Okhla Ind. Area, Ph-I, N. Delhi.
7) M/s Assam Electricals, Tinsukhia (Assam)
8) M/s Stesalit Ltd, Ind Area Baddi, Solan (H.P.)